新聞中心您現(xiàn)在的位置:首頁 > 新聞中心 > 研生試劑-生命科學生物工程將成為組裝生命的生物工廠
研生試劑-生命科學生物工程將成為組裝生命的生物工廠
更新時間:2014-05-27   點擊次數(shù):611次

                   研生試劑-生命科學生物工程將成為組裝生命的生物工廠

對于以電子工程為模式的生物技術,生物組件是它的基礎

  雖然“基因工程”這個詞已至少用了30年,DNA重組技術也是現(xiàn)代生物學研究的主流技術,但是大多數(shù)生物工程學家所進行的生物相關研究,卻與工程技術鮮有共同之處。其中一個原因就是,現(xiàn)有的生物工具,在標準化和實用性方面還沒有達到與其他工程技術領域相應的水平;而另一個原因,則是生物學的研究方法和思路還有待改進,盡管生物學研究已經(jīng) 深受工業(yè)技術的影響。

  舉例來說,電子工程的轉(zhuǎn)型起始于1957年。那一年,美國Fairchild半導體公司(這家公司的所在地就是后來的硅谷)的瓊·霍爾尼(Jean Hoerni)和羅伯特·N·諾伊斯(Robert N.Noyce)發(fā)明了平面技術。這是一種利用光掩模(photomask),在硅晶圓(silicon wafer)內(nèi),對金屬及化學物質(zhì)進行層疊和刻蝕的系統(tǒng)。利用這種新技術,工程師們不僅能夠出品質(zhì)穩(wěn)定的、簡潔的集成電路,還能通過改變光掩模的模式,出各種類型的電路。此后不久,工程師們就可以對前人所設計的簡單電路進行選擇組合,設計出更加復雜、應用范圍更廣的電路。

  在那個年代,電子電路的標準方法還比較原始,只是將電路的各個晶體管(transistor)逐一串連起來。這是一種手工過程,其產(chǎn)品質(zhì)量參差不齊,被新興電子工業(yè)界*為技術瓶頸。相反,平面技術則大步前進,進展速度驚人,與的摩爾定律(Moore’s Law)所提出的速度相差無幾。

  半導體芯片的設計技術與方法學相結(jié)合的產(chǎn)物—— 芯片廠(chip fab),已成為*zui成功的工程范例之一。它也為另一新興技術領域—— 生物體系業(yè),提供了寶貴的發(fā)展模式。

  實際上,今天的基因工程師所使用的方法,仍處于較原始的階段。正如我們的同事,美國麻省理工學院人工智能實驗室的湯姆·奈特(Tom Knight)所說的那樣:“DNA序列的組裝技術沒有標準化,致使每一次DNA組裝反應在自身還處于實驗階段的同時,就不得不充當解決目前研究課題的實驗工具。”

  生物工程在方法和組件上的標準化,可以促使兼容組件設計庫建立,并使組件的加工外包成為可能。理論與的分離,使生物工程師能夠自由地構(gòu)想更加復雜的裝置,并應用強大的工程工具(例如計算機輔助設計),來處理由此而來的復雜性。

  生物零件

  2000年,當時就職于美國普林斯頓大學(Princeton University)的邁克爾·埃洛威茨(Michael Elowitz)和斯坦尼斯拉斯·萊布勒(Stanislas Leibler),以及美國波士頓大學(Boston University)的柯林斯、蒂姆·加德納(Tim Gardner)和查爾斯·坎托(Charles Cantor)等人,利用生物零件(biobrick)了*批基本電路元件:一個環(huán)形振蕩器和一個扳鍵開關。他們的研究代表了人造功能性生物電路的成功。而早在1975年,科學家們就已經(jīng)知道,自然界的生物正是利用此類電路來調(diào)控它們的基因——從知道到成功,科學家們用了整整25年的時間!

  埃洛威茨和萊布勒的環(huán)狀振蕩器很好地闡釋了何為生物電路。振蕩器的基本電路是一個質(zhì)粒(plasmid,環(huán)狀DNA),該質(zhì)粒帶有三個基因:tetR、lacI和λcI,分別編碼三種蛋白:TetR、LacI和λcI。任何基因翻譯成蛋白質(zhì)的首要條件是,聚合酶(polymerase)與基因上游區(qū)域的啟動子(promoter)結(jié)合。隨后,聚合酶將基因轉(zhuǎn)錄為信使RNA(messenger RNA),然后信使RNA被翻譯成蛋白質(zhì)。如果聚合酶不能與啟動子結(jié)合,那么基因就不能被翻譯,也就不能生成蛋白質(zhì)。

  埃洛威茨和萊布勒給三個基因的蛋白產(chǎn)物分配了特殊的任務:選擇性地與另外一個基因的啟動子結(jié)合。如此一來,LacI蛋白與tetR的啟動子結(jié)合,λcI蛋白與lacI基因的啟動子結(jié)合,而TetR蛋白則與λcI基因的啟動子結(jié)合。這種關聯(lián)性使得一個基因的蛋白產(chǎn)物能夠阻遏聚合酶與另一個基因的啟動子結(jié)合。因此,這三種蛋白的生成構(gòu)成了一個振蕩循環(huán):大量LacI蛋白的生成抑制了tetR基因的表達;TetR蛋白的缺失使λcI基因得以表達;而λcI蛋白又抑制LacI蛋白的生成,這個過程不斷循環(huán)。

  若將該循環(huán)中的一個基因與表達綠色熒光蛋白的基因相連,再將整個電路轉(zhuǎn)入一個細菌中,那么你就會發(fā)現(xiàn)神奇的一幕:這個細菌會像節(jié)日彩燈般閃爍!與之相似,柯林斯小組研制的基因扳鍵開關也可用于細菌的程序化:一旦細菌的DNA受損,那么在細菌周圍就會出現(xiàn)一種跳躍著綠色熒光的“菌苔”!

 

化工儀器網(wǎng)

推薦收藏該企業(yè)網(wǎng)站